Absolute and Relative Gas Concentration: Understanding Oxygen in Air
 Bruce Bugbee and Mark Blonquist

Absolute and Relative Gas Concentration

Gas concentration is described in two ways, absolute and relative concentration (Table 1). The ideal gas law yields absolute gas concentration $\left[\mathrm{mol} \mathrm{m}^{-3}\right]$:

$$
\begin{equation*}
P V=n R T \tag{1}
\end{equation*}
$$

where P is pressure [Pa], V is volume $\left[\mathrm{m}^{3}\right.$], n is gas quantity [mol], T is temperature $[\mathrm{K}], R$ is the ideal gas constant ($8.315 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$), and rearranging Eq. (1) to solve for $n / V\left[\mathrm{~mol} \mathrm{~m}^{-3}\right]$ yields absolute gas concentration (Table 1). However, the simplest and most common way to report the concentration of a specific gas in a mixture is by expressing it relative to the other gases in the mixture, as a fraction or percentage (Table 1). For example, the amount of oxygen $\left(\mathrm{O}_{2}\right)$ in the atmosphere, assuming there is no water vapor in the atmosphere, is $0.2095 \mathrm{kPa} \mathrm{O}_{2}$ per kPa air or 20.95 \%. The atmospheric concentration of O_{2} has remained constant for several hundred years at 20.95%. The percentage is the same at sea level or on Mount Everest. However, the absolute O_{2} concentration does not remain constant. An O_{2} tank is required to climb Mount Everest, even though the relative O_{2} concentration is still 20.95 \% (Fig. 1A). The absolute O_{2} concentration determines the rate of most biological and chemical processes, but the relative O_{2} concentration is typically reported. This is analogous to discussing relative humidity when absolute humidity is what determines evaporation rates. Absolute and relative gas concentration measurements can be expressed using several different units (Table 1).

Table 1. Units used to describe absolute and relative gas concentration measurements.

Absolute Amount of Gas	Relative Amount of Gas
moles of \mathbf{O}_{2} per unit volume	$\mathbf{\%} \mathbf{O}_{\mathbf{2}}$ in air
(e.g. moles per Liter)	(e.g. 20.95% in ambient air)
mass of \mathbf{O}_{2} per unit volume	
(e.g. grams per Liter;	mole fraction
O_{2} has a mass of 32 g per mole)	(e.g. moles of O_{2} per mole of air; $0.2095 \mathrm{~mol} \mathrm{O}_{2}$ partial pressure (e.g. kilopascals $[\mathrm{kPa}]$)
expresed as $0.2095 \mathrm{kPa} \mathrm{O}_{2}$ per kPa air)	

Effect of Barometric Pressure on Gas Concentration

The ideal gas law (Eq. (1)) shows that absolute gas concentration increases by 0.987% at sea level for every 1 kPa increase in pressure ($1 \mathrm{kPa} / 101.325 \mathrm{kPa}=0.00987$). For a sensor that measures absolute gas concentration but is calibrated to read out in relative units, a 1 kPa pressure increase at sea level results in an apparent O_{2} increase of $0.207 \%(0.00987 * 20.95 \%=$
0.207 \%) and an apparent relative O_{2} concentration of 21.157%. The relative gas concentration didn't really increase, but the absolute concentration, which is what sensors measure, did change. This shows up as an apparent change in relative concentration.

Due to lower barometric pressure at higher elevations (Fig. 1A), the percentage increase in absolute gas concentration per kPa increases with elevation. For example, at an elevation of 1358 m (Logan, Utah), the barometric pressure is approximately 86 kPa and the absolute gas concentration increases by 1.16 \% for every 1 kPa increase in pressure ($1 \mathrm{kPa} / 86.0 \mathrm{kPa}=$ 0.0116). Again, for a sensor that measures absolute gas concentration but is calibrated to read out in relative units, this results in an apparent O_{2} increase. In this example, $0.247 \% \mathrm{O}_{2}$ for every 1 kPa increase in barometric pressure ($0.0118 * 20.95 \%=0.243 \%$) and an apparent relative O_{2} concentration of 21.193 \%.

A barometric pressure correction should be applied to all O_{2} sensors that are calibrated to read relative O_{2} concentration. The equation to correct O_{2} measurements for barometric pressure at any elevation is:

$$
\begin{equation*}
O_{2}=O_{2 M}\left[1-\left(\frac{B P_{M}-B P_{C}}{B P_{C}}\right)\right] \tag{2}
\end{equation*}
$$

where $O_{2 M}$ is measured O_{2} concentration [\%] (the apparent O_{2} concentration), $B P_{C}$ is barometric pressure [kPa] at the time of calibration, and $B P_{M}$ is barometric pressure [kPa] at the time of the measurement. Approximate barometric pressure for a given elevation is calculated from:

$$
\begin{equation*}
B P_{A V E}=101.325-101.325\left[1-\left(1-\frac{E}{44307.69231}\right)^{5.25328}\right] \tag{3}
\end{equation*}
$$

where E is elevation [m]. In order to make a barometric pressure correction on gas measurements, it must be continuously measured as it changes over time. The typical annual range is approximately 4 kPa , or the average pressure for a given elevation $+/-2 \mathrm{kPa}$.

The apparent effects of barometric pressure on relative O_{2} measurements, based on calculations from Eq. (2), are plotted for 1358 m elevation (Fig. 1B) to show the significance of measuring and correcting for barometric pressure. If not accounted for, barometric pressure fluctuations show up in the O_{2} measurement as a change in relative O_{2} concentration because sensors respond to absolute O_{2} concentration, but are generally calibrated to read relative O_{2} concentration.

Figure 1: A) Barometric pressure and absolute O_{2} concentration [mmol / L] at $20{ }^{\circ} \mathrm{C}$ as a function of elevation. Equation (3) was used to calculate barometric pressure. B) The effect of barometric pressure on apparent relative O_{2} concentration (O_{2} concentration measured with an O_{2} sensor). O_{2} sensors respond to absolute O_{2} concentration but are generally calibrated to yield relative O_{2} concentration. As the barometric pressure fluctuates, the absolute O_{2} concentration, and thus the O_{2} sensor output, fluctuates with it, producing an apparent change in the relative O_{2} concentration if the pressure effect is not accounted for. It is assumed the sensor was calibrated at 86.0 kPa . The solid line shows how the apparent relative O_{2} concentration is dependent on barometric pressure.

Effect of Temperature on Gas Concentration

The ideal gas law (Eq. (1)) shows that absolute gas concentration decreases by 0.341% for a $1{ }^{\circ} \mathrm{C}$ increase in temperature from $20^{\circ} \mathrm{C}(1 \mathrm{~K} / 293 \mathrm{~K}=0.00341)$. For a sensor that measures absolute gas concentration but is calibrated to read out in relative units, a $1{ }^{\circ} \mathrm{C}$ temperature increase from $20^{\circ} \mathrm{C}$ results in an apparent decrease of $0.0714 \% \mathrm{O}_{2}\left(0.341 \%{ }^{*}\right.$ $0.2095=0.0714 \%$) and a relative O_{2} concentration of 20.8786%. As with barometric pressure, to obtain accurate O_{2} measurements a correction should be applied to compensate for temperature effects. The equation to correct O_{2} measurements in air for temperature effects is:

$$
\begin{equation*}
O_{2}=O_{2 M}\left[1+\left(\frac{\left(T_{M}-T_{C}\right)}{T_{C}}\right)\right] \tag{4}
\end{equation*}
$$

where $O_{2 M}$ is as given above, T_{C} is the air temperature [K] at calibration, and T_{M} is the air temperature [K] at the time of the measurement. The effects of temperature on relative O_{2} measurements, based on calculations from Eq. (4) are plotted (Fig. 2) to show the significance of measuring and correcting for temperature. If not accounted for, temperature fluctuations show up in the measurement as an apparent change in relative O_{2} concentration because sensors respond to absolute O_{2} concentration but are calibrated to read relative O_{2} concentration.

Sensor Response to Temperature

In practice, Eq. (4) does not accurately correct for temperature effects because in addition to the ideal gas law temperature effect, sensor electronics are affected by temperature. The combination of these two effects on Apogee O_{2} sensors (soil and fast response sensors) was determined from measurements in dry air across a wide temperature range by plotting pressurecorrected apparent O_{2} concentration (i.e., measured O_{2} concentration before temperature correction was applied) versus sensor temperature (T_{S}) (Fig. 2). Neither of the sensors follows the ideal gas law response (Fig. 2), and thus an empirical correction derived from the measured data must be applied to account for both the ideal gas law and sensor electronics responses:

$$
\begin{equation*}
O_{2}=O_{2 M}+C_{3} T_{S}^{3}+C_{2} T_{S}^{2}+C_{1} T_{S}+C_{0} \tag{5}
\end{equation*}
$$

where T_{S} is the measured sensor temperature [${ }^{\circ} \mathrm{C}$] (Apogee O_{2} sensors come with a thermistor or type-K thermocouple temperature reference); the coefficients C_{3}, C_{2}, and C_{1} are listed in Fig. 2 for both the soil and fast-response sensors; and C_{0} is the offset coefficient calculated from the temperature at calibration, $T_{C}\left[{ }^{\circ} \mathrm{C}\right]$:

$$
\begin{equation*}
C_{0}=-\left(C_{3} T_{C}^{3}+C_{2} T_{C}^{2}+C_{1} T_{C}^{1}\right) \tag{6}
\end{equation*}
$$

It is likely that the temperature effect on the sensor electronics varies from sensor to sensor, thus the coefficients derived herein (the average of the three sensors; error bars are shown in Fig. 2) may not yield the most accurate temperature correction for all sensors of the same model.

Figure 2: Empirically-measured temperature responses of the soil and fast-response O_{2} sensors, with third order polynomials fit to the data points, compared to the theoretical temperature response calculated from the ideal gas law (Eq. (1)). The difference between the theoretical and measured responses is due to a temperature effect on the sensor electronics. The polynomial coefficients used to correct for the temperature response with Eq. (5) are listed. An offset coefficient $\left(C_{0}\right)$ is not listed because it is dependent on the temperature at calibration. It is calculated with Eq. (6). The sensors were calibrated at $20^{\circ} \mathrm{C}$. As with barometric pressure, the absolute O_{2} concentration, and thus the O_{2} sensor output, varies with temperature. As temperature changes the relative O_{2} concentration remains constant at 20.95%, but an apparent O_{2} change is measured if the temperature correction is not applied to relative measurements.

Effect of Humidity on Gas Concentration

As the humidity in the atmosphere increases, water vapor molecules displace and dilute other gas molecules, including O_{2} molecules. This causes the output of a sensor to decrease. The effect of water vapor displacement of O_{2} is larger at warmer temperatures because the capacity of air to hold water is greater and there is more water vapor in the air. The water vapor effect on relative O_{2} concentration as a function of relative humidity (RH) and at a constant temperature (Fig. 3A) is a linear decrease with increasing $R H$. Conversely, the effect as a function of temperature at constant $R H$ is a curvilinear decrease with increasing temperature (Fig. 3B), essentially the inverse of the slope of the vapor pressure curves from the pyschrometric chart. Even though water vapor molecules dilute and diplace O_{2} molecules, and thus cause an actual and not an apparent decrease in relative O_{2} concentration, humidity effects are accounted for to yield relative O_{2} concentrations for a dry atmosphere. The equation to correct for humidity effects is:

$$
\begin{equation*}
O_{2}=O_{2 M}\left[1+\left(\frac{e_{A M}-e_{A C}}{B P_{C}}\right)\right] \tag{7}
\end{equation*}
$$

where $B P_{C}$ is as given above, $e_{A M}$ is the vapor pressure [kPa] of the air at the time of measurement, and $e_{A C}$ is the vapor pressure [kPa] of the air at calibration. The vapor pressures in Eq. (7) are calculated from:

$$
\begin{equation*}
e_{A}=e_{S}\left(\frac{R H}{100}\right) \tag{8}
\end{equation*}
$$

where $R H$ is in \% and e_{S} is the saturation vapor pressure [kPa] of the air calculated from air temperature $\left(T_{A}\right)\left[{ }^{\circ} \mathrm{C}\right]:$

$$
\begin{equation*}
e_{S}=0.61121 \exp \left(\frac{17.502 T_{A}}{240.97+T_{A}}\right) \tag{9}
\end{equation*}
$$

In soil environments $R H$ is generally always 100%, unless the soil is extremely dry. Thus, the water vapor effect can be accounted for as a function of temperature by correcting O_{2} measurements based on the shape of the curve for $100 \% R H$.

As with temperature, humidity also causes a slight effect on the sensor electronics. It is recommended that for measurements in soil or saturated air ($R H=100 \%$), the sensor be calibrated in conditions where the $R H=100 \%$. A simple way to accomplish this is to mount the sensor in a sealed chamber over water (Fig. 4).

Figure 3: A) Relative humidity $(R H)$ effects on relative O_{2} concentration shown as a function of $R H$ at temperatures increments of $10^{\circ} \mathrm{C}$ and B) as a function of temperature at $R H$ increments of 20%. The air in soil is generally always saturated with water vapor unless the soil is very dry.

Figure 4: Apogee O_{2} sensor mounted in a sealed chamber over water. For measurements in environments where the $R H=100 \%$, sensors should be calibrated in conditions where the $\mathrm{RH}=$ 100% in order to account for any humidity effects on sensor electronics.

Sensor Description and Calibration

Apogee O_{2} sensors are galvanic cell sensors with a lead anode, gold cathode, acid electrolyte, and Teflon membrane (membrane where O_{2} diffusion occurs). The current flow between the two electrodes is linearly proportional to the absolute amount of O_{2} in the environment being measured. An internal bridge resistor is used to produce a voltage output rather than a direct current output. Galvanic cell sensors consume a small amount of gas in order to produce the current flow between the electrodes and subsequent voltage output. The O_{2} consumption from Apogee O_{2} sensors was measured to be $2.1 \mu \mathrm{~mol}$ per day at $20.95 \% \mathrm{O}_{2}$ and at an average temperature of $20^{\circ} \mathrm{C}$ in a small sealed chamber.

All sensors are equipped with an internal thermistor or type-K thermocouple for reference temperature measurement. The sensors also come equipped with a small resistance heater located behind the Teflon membrane inside the sensor. The heaters are designed to warm the sensor to a temperature slightly above ambient in order to keep condensation from occurring on the membrane under conditions where the $R H$ is 100%. The response time of the soil sensor is 60 seconds versus 14 seconds for the fast-response sensor (Fig. 5). The response time is defined as the time required for the sensor to read 90% of the saturated response.

Figure 5: Response times for both Apogee O_{2} sensor models (soil sensor and fast-response sensor). The response time is defined as the time required for the sensor to read 90% of the saturated response (60 seconds for the soil sensor and 14 seconds for the fast-response sensor).

The output signal for the soil sensor is approximately 58.0 mV under typical atmospheric conditions ($20.95 \% \mathrm{O}_{2}$ and 101.325 kPa) and the signal decrease is reported as 1.0 mV per year (<2.0 \% per year) (Fig. 6). The output signal for the fast-response sensor is approximately 12.8 mV under typical atmospheric conditions and the signal decrease is reported as 0.8 mV per year (6 \% per year up to 5 years) (Fig. 6).

The output of Apogee O_{2} sensors is a linear function of absolute O_{2} concentration. A simple linear calibration is generally used to derive a calibration factor used to convert the output from the sensor to relative O_{2} concentration. The calibration factor (CF) [$\% \mathrm{O}_{2} / \mathrm{mV}$] is derived by simply dividing ambient O_{2} concentration (20.95%) by the measured voltage output from the sensor under ambient conditions (in air or over water in a sealed chamber) minus the measured voltage output under conditions of $0 \% \mathrm{O}_{2}$:

$$
\begin{equation*}
C F=\frac{20.95 \%}{m V_{C}-m V_{0}} \tag{10}
\end{equation*}
$$

where $m V_{C}$ is the output [mV] of the sensor during calibration, $m V_{0}$ is the voltage output [mV] under $0 \% \mathrm{O}_{2}$, and $C F$ is a linear multiplier that converts subsequent voltage measurements from the sensor to $\% \mathrm{O}_{2}$ using the equation:

$$
\begin{equation*}
O_{2}=C F \cdot m V_{M}-\text { Offset } \tag{11}
\end{equation*}
$$

where $m V_{M}$ is the measured output [mV] and Offset is derived by multiplying $C F$ by $m V_{0}$. If $m V_{0}$ is not measured it can be assumed to be 2.5 mV for the soil sensor and 0.25 mV for the fastresponse sensor. It is recommend that $m V_{0}$ be measured (in pure N_{2} gas) for applications where low values of $\mathrm{O}_{2}(<15 \%)$ will be measured.

Figure 6: Long-term stability (output voltage decrease over time) of both Apogee O_{2} sensor models (soil and fast response sensors). The response time and signal decrease are also listed for the two models.

